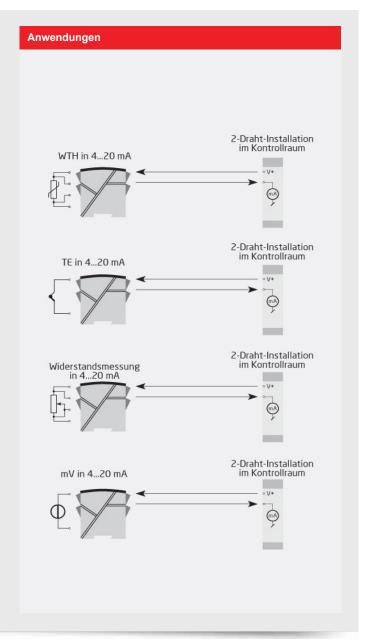


2-Draht Universalmessumformer

6331A

- Eingang für WTH, TE, Ω oder mV
- Extreme Messgenauigkeit
- Galvanische Trennung
- Programmierbare Sensorfehlanzeige
- 1- oder 2-kanalige Ausführung

Verwendung


- · Linearisierte Temperaturmessung mit Pt100...Pt1000, Ni100...Ni1000 oder Thermoelementsensor.
- Umwandlung von linearer Widerstandsänderung in ein analoges Standard-Stromsignal, z.B. von Ventilen oder Niveau-Messwertgeber.
- Verstärkung von bipolaren mV-Signalen zu einem Standard 4...20 mA Stromsignal.

Technische Merkmale

- PR6331A kann vom Benutzer innerhalb von wenigen Sekunden zur Messung in allen genormten Temperaturbereiche programmiert werden.
- · Der WTH- und Widerstandseingang haben Leitungskompensation bei 2-, 3- oder 4-Leiter-Anschluss.
- · Das Ausgangssignal kann für eine Begrenzung programmiert
- · Die gespeicherten Daten werden laufend kontrolliert

Montage / Installation

· Wird vertikal oder horizontal auf DIN-Schiene montiert. Mit der Zweitkanal-version können 84 Kanäle pro Meter installiert werden.

Bestellangaben:

Туре	Galvanische 1	rennung	Kanäle	
6331A	1500 VAC	: 2	Einkanalig	: A
			Zweikanalig	: B

^{*}Zu beachten! Für TE-Eingänge mit interner Vergleichsstellenkompensation (CJC) sind die CJC-Anschlussstecker Typ 5910 (Kanal 1) und 5913 (Kanal 2) zu bestellen.

		_	_			
П	anml	bund	ıeha	dina	าเเท	nan
u	ıııue	Duile	JONE	ulli	auii	uei

Betriebstemperatur	-40°C bis +85°C
Lagertemperatur	-40°C bis +85°C
Kalibrierungstemperatur	2028°C
Relative Luftfeuchtigkeit	< 95% RF (nicht kond.)
Schutzart	IP20

Mechanische Spezifikationen

Abmessungen (HxBxT)	109 x 23,5 x 104 mm
Gewicht (1 / 2 Kanäle)	
Hutschienentyp Leitungsquerschnitt	DIN EN 60715/35 mm
Leitungsquerschnitt	0,132,08 mm ² / AWG
	2614 Litzendraht
Klemmschraubenanzugsmoment	0,5 Nm

Allgemeine Spezifikationen

Versorgung

Versorgungsspannung	7,235 VDC
Verlustleistung, pro Kanal	0,170,8 W

Isolationsspannung, Test/Betrieb...... 1,5 kVAC / 50 VAC

Ansprechzeit

Ansprechzeit (programmierbar)	160 s
Spannungsabfall Aufwärmzeit Programmierung Signal- / Rauschverhältnis Genauigkeit.	5 min. Loop Link Min. 60 dB
EEprom Fehlerkontrolle	< 3,5 s 20 Bit
Versorgungsspannung EMV-Immunitätswirkung Erweiterte EMV-immunität: NAMUR NE21, A Kriterium, Burst	< ±0,5% d. Messsp.

Eingangsspezifikazionen

Allgemeine Eingangsspezifikationen

Max. Nullpunktverschiebung	
(Offset)	50% d. gew. MaxWertes

WTH-Eingang

WTH-Typ	Pt100, Ni100, lin.
Leitungswiderstand pro Leiter	
(Max.)	5 Ω
Sensorstrom	Nom. 0,2 mA
Wirkung des Leitungswiderstandes	
(3- / 4-Leiter)	< 0,002 Ω / Ω
Fühlerfehlererkennung	Ja

TE-Eingang

Thermoelement Typ	B, E, J, K, L, N, R, S, T, U, W3. W5. LR
Vergleichsstellenkompensation	VVO, VVO, EIX
(CJC)	< ±1.0°C
Fühlerfehlererkennung	*

..... Nom. 33 μA / 0 μA

Linearer Widerstands-Eingang

Fühlerfehlerstrom: Bei Erkennung

Linearer Widerstand min....max...... 0 Ω ...5000 Ω

Spannungseingang

Messbereich	-12800 mV
Min. Messereich (Spanne)	5 mV
Eingangswiderstand	10 ΜΩ

Ausgangsspezifikationen

Stromausgang

Signalbereich	420 mA
Min. Signalbereich	16 mA
Belastung (bei Stromausgang)	\leq (VVersorgung - 7,2) / 0,023 $[\Omega]$
Belastungsstabilität	≤ 0,01% d. Messsp. / 100 Ω
Fühlerfehleranzeige	
NAMUR NE43 Upscale/Downscale	23 mA / 3,5 mA

Allgemeine Ausgangsspezifikationen

Aktualisierungszeit	440 ms
---------------------	--------

*d. Messspanne..... = der gewählten Messspanne

Eingehaltene Behördenvorschriften

EMV	2014/30/EU
EAC	TR-CU 020/2011

Zulassungen

ATEX 2014/34/EU	KEMA 10ATEX0005 X
IECEx	DEK 14.0047 X